If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-365=0
a = 2; b = 5; c = -365;
Δ = b2-4ac
Δ = 52-4·2·(-365)
Δ = 2945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{2945}}{2*2}=\frac{-5-\sqrt{2945}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{2945}}{2*2}=\frac{-5+\sqrt{2945}}{4} $
| 8x2+26x–24=0 | | x-6+5=2 | | 7x+14=59 | | 3(x-11)=-15 | | 21=3(x+5)–4x | | p-95=12 | | .3=(x)(2.5) | | 45y+20=110 | | x+2x=100-10 | | 75+y=49 | | y=10+(0.08*y) | | 12-2×=1x | | 134=6x-16 | | 8x-5=6x-27 | | (x+5)(x-4)=x^+x-20 | | 3(2x+4)-4(x+1)=-8 | | x+4=12*3 | | 18w=9w+18 | | .25(-2x+5)=0.13x+3 | | 0.3a+0.6=0.5a-0.1 | | 2.3h=19.55 | | 5b=2b=30 | | k-2/4=1 | | 8b+3=35 | | 6x+23=14x+9 | | n/2=-25 | | 8n/3+15=31 | | Y+5/3=2y | | 6b+4=28 | | ⁷(x-3)=5(x+3) | | 4(2w-7)=6w | | 75=-1.4(x+5) |